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Abstract—Federated learning (FL) is decentralized machine
learning framework that finds various applications in health,
finance, and the Internet of things. This article studies the under-
explored business competition in FL, where organizations are
both collaborators in training a shared model and competitors
in providing model-based services to a continuum of customers.
We focus on an oligopoly case with three organizations. To
understand how competition affects FL collaboration, we start
with a benchmark case where organizations are not competitors,
and show that they have an incentive to collaborate. However,
in the presence of competition, organizations may prefer to
train local models instead of collaborating via FL (even if FL
incurs zero training costs). The reason is that FL intensifies price
competition by improving organizations’ model performance to
a similar level. To address this issue, we devise a model differen-
tiation mechanism in which organizations adaptively adjust their
model performance, enabling differentiated model-based services
to customers. We prove that the adaptive mechanism converges
in polynomial time and is incentive compatible. Perhaps sur-
prisingly, numerical experiments on CIFAR-10 show that the
mechanism can simultaneously improve the model performance,
organizations’ revenues, and social welfare. The improvement is
up to 22.31%, 14.42%, and 19.50%, respectively.

Index Terms—Artificial intelligence, business competition, fed-
erated learning (FL), game theory, machine learning, mechanism
design.

I. INTRODUCTION

A. Motivations

FEDERATED learning (FL) is a popular machine learning
paradigm that enables decentralized, collaborative model

training across multiple participating organizations or devices
while keeping the data localized [1]. Unlike traditional central-
ized approaches where raw data is pooled together (e.g., into a
single server) for model training, FL allows each participant to
train the model on their local data set and share only the model
updates, thereby preserving data privacy. More specifically, FL
typically consists of several steps.

1) Local Training: Each participant trains a shared model
on their own data set.
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Fig. 1. FL collaboration and business competition. The organizations
collaborate in FL training, and each can obtain an improved local model.
Meanwhile, the organizations may also compete in selling model-based
services at different prices to customers.

2) Model Update Sharing: Instead of sending raw data,
participants share only the model updates, such as
weights or gradients, with a coordinating server or
among themselves.

3) Aggregation: A server or some designated device aggre-
gates the model updates to generate a new shared model.

4) Distribution: The updated shared model is then dis-
tributed back to the participants for further local training.

The above iterative steps stop once the shared model
converges, or the overall time (e.g., for training and

communication) exceeds a predefined threshold.
Prior FL studies focused on algorithm development to

improve training performance in the presence of data and
system heterogeneity, which makes FL more promising in
various applications, such as healthcare, finance, and the
Internet of Things [2], [3]. However, the interaction between
FL and business competition is not well understood, which is
the focus of this article. To be more concrete, participating
organizations, although aligned in developing a shared model,
are usually direct competitors in the market for model-based
services [2], [4]. We discuss some potential examples as
follows (see also Fig. 1).

1) Healthcare [5]: Multiple healthcare organizations might
collaborate to develop a more accurate diagnostic model
via FL, but they also compete for patients who seek
high-quality diagnostic services.

2) Finance [6]: Several reinsurance firms could collabo-
ratively train risk assessment models that better predict
large-scale financial losses due to catastrophic events.
However, they may also compete in underwriting con-
tracts for customers who seek to mitigate risk exposure.
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3) Retail [7]: A group of retail companies could jointly
train a customer behavior model to understand pur-
chasing patterns better, yet fiercely compete in offering
personalized marketing or discounts based on the
insights drawn from the shared FL model.

The above examples motivate our first question below.
Question 1: How does business competition affect

organizations’ FL collaboration?
We focus on an oligopoly setting with three organizations
and a continuum of distributed customers, which provides
a manageable yet rich setting to capture the complexity
of collaborative and competitive dynamics. Note that our
analysis can be generalized to where there are three groups
of service providers and each group may contain several
organizations.1 Each organization aims to maximize its own
revenue via strategically forming FL training coalitions and
deciding market prices for providing model-based services
to the customers. We use the concept of core stability from
coalitional game theory to analyze how organizations form
stable FL coalitions [8]. Core stability provides a theoretical
framework for evaluating the sustainability/stability of collab-
orative arrangements, particularly in settings where competing
incentives among organizations can undermine coalition for-
mation. To answer Question 1, we study two cases.

1) Noncompetitive: Organizations are not competitors and
each has an exclusive pool of customers.

2) Competitive: Organizations compete for the same pool
of customers.

For the noncompetitive case, not surprisingly, organizations
have an incentive to collaborate via FL. This is because FL
collaboration leads to improved model performance, which in
turn, drives higher revenues as customers in their exclusive
markets are more likely to procure enhanced model-based
services. For the competitive case, however, organizations
vying for the same pool of customers tend to avoid FL col-
laboration despite its potential to improve model performance.
The reason is that FL harmonizes model performance among
the organizations, which intensifies price competition facing
the same pool of customers. This can lead to a lower revenue
for certain organizations and hence they tend to train local
models instead of collaborating via FL.

The above results unfortunately imply that business com-
petition serves as a barrier in organizations’ willingness
to engage in FL collaborations. This motivates our second
question.

Question 2: How to encourage FL collaboration among
competing organizations?

To answer Question 2, we propose a model differentiation
mechanism, in which organizations adaptively modify the
performance of their local models when providing services
to customers. In this mechanism, each organization can apply
alterations to its local model, e.g., via customized noise or
reduced model size. The goal is to enable each organization to
offer model-based services that possess differentiated qualities,
thereby reducing competition and enhancing revenues. Note
that prior FL mechanisms typically require monetary transfer

1We discuss the extension to more than three organizations in Section VIII.

among the central server and the organizations. Our proposed
model differentiation mechanism differs in that it does not
require any monetary transfer among organizations, which is
easier to implement in practice.

While it might be intuitive to think that such model
differentiation could harm customers by reducing competition
and potentially raising prices, our findings suggest a more
nuanced picture. Interestingly, we show that the differentiation
mechanism can enhance both organizational revenues and
social welfare (defined as the summation of organizations’
revenues and consumer surplus). Although model differentia-
tion may result in higher prices, it incentivizes organizations
to collaborate through FL, leading to the provision of higher
quality services. This creates a win-win situation, where
organizations generate higher revenues and customers receive
more value, ultimately enhancing overall social welfare.

B. Key Contributions

We summarize the key contributions of this article as
follows.

1) Oligopoly Competition in FL: To our best knowledge,
this work is among the first studies on oligopoly com-
petition in FL. Our work offers implications for the
overlooked organization strategy and social welfare in
competitive FL systems.

2) Stability Analysis: We analyze the stability of FL coali-
tions. In the absence of competition, we show that grand
coalition (all organizations forming an FL coalition) is
core stable. In the presence of competition, however,
separation (no organizations performing FL) tends to be
core stable.

3) Model Differentiation Mechanism: We propose a model
differentiation mechanism to encourage FL collaboration
in the presence of competition. The mechanism incen-
tivizes FL collaboration without requiring monetary
transfer among organizations, and it is proven to be
incentive compatible.

4) Numerical Experiments: We conduct numerical exper-
iments on CIFAR-10. We show that compared to the
case without model differentiation, our mechanism can
significantly improve the model performance, organi-
zations’ revenues, as well as the social welfare. The
improvement is up to 22.31%, 14.42%, and 19.50%,
respectively.

The remainder of this article is organized as follows.
Section II reviews related work and Section III introduces
the system model. Section IV analyzes the noncompetitive
case, while Section V studies the competitive case and further
answers Question 1. Section VI presents the model differentia-
tion mechanism and answers Question 2. Section VII provides
numerical results. Section VIII discusses the model extension
and Section IX concludes this article.

II. RELATED WORK

A. Coalition in FL

There are some excellent recent studies on the stability
of coalitions in FL systems, e.g., [9], [10], [11], [12], [13],
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[14], [15]. For example, Donahue and Kleinberg [9], and [10]
gave a comprehensive stability analysis of FL coalitions where
participants aim to minimize model loss. Jiang and Wu [11]
considered a tradeoff between model performance and com-
munication/computation costs and presented a merge-and-split
algorithm to find the stable coalition. Bao et al. [15] studied
coalition structures that alleviate negative transfers among
clients. Ray Chaudhury et al. [12] incorporated the notion of
fairness into core stability and analyzed the corresponding FL
coalition.

Our work differs from this stream of studies in that none of
them studied business competition in FL. The consideration
of business competition in FL is practically important but also
technically challenging. The main reason is that organizations
need to simultaneously optimize its FL coalition and prices
facing the same base of strategic customers.

B. Incentive Design in FL

There has been an increasing volume of studies
on the incentive mechanism design for FL. Refer
to [16], [17], and [4] for a few excellent surveys. To
name a few, [18], [19], [20] designed contract mechanisms
to encourage data sharing and training participation in
FL. Lu et al. [21] used auctions to appropriately select clients
for model training. Luo et al. [22] devised a Stackelberg game
approach to incentivize client participation.

Our work differs from prior incentive studies in that
prior studies focused on monetary incentives, which may
be unviable for competing organizations in practice. Instead,
we propose a model differentiation mechanism that does
not require any monetary payment. The mechanism design,
however, is highly nontrivial due to clients’ strategic decisions
on FL learning collaboration.

C. Business Competition in FL

Business competition is a critical component in practical
FL systems and until recently there are several related papers,
e.g., [2], [6], [23], [24], [25]. Wu and Yu [6] studied a fully
competitive market where organizations are price takers, and
hence did not model the important business strategy related
to price design. Wang et al. [23] introduced a mechanism
that aims to maximize the overall system profit with the help
of a coordinator. Huang et al. [2] analyzed a duopoly case
where two organizations aim to maximize their own profit.
Sun et al. [24] discussed the implications of competition in an
electric vehicle market. However, the studies in [23] and [2]
used monetary transfer among organizations to incentivize
collaboration, which may not be viable in practice. Instead,
our work used a model differentiation mechanism that does
not require any monetary transfer.

The model differentiation mechanism in our work is moti-
vated by the vertical differentiation literature in economics,
e.g., [26], [27], [28]. Vertical differentiation refers to vari-
ations in services and qualities that distinguish higher end
offerings from lower end alternatives in a competitive market.
We note that the analysis of model differentiation in FL is more
challenging than prior vertical differentiation studies. That is,

prior work typically assumed that organizations independently
adjust the qualities without collaboratively improving service
qualities. In FL, however, organizations need to jointly con-
sider the collaborative training coalition, which in turn affects
the feasible space of all organizations’ model differentiation.

III. SYSTEM MODEL

In Section III-A, we first introduce the FL process among
organizations. In Sections III-B and III-C, we define the
strategies and objectives functions of the customers and
organizations, respectively. In Section III-D, we formulate the
game-theoretical interactions between customers and organi-
zations.

A. Federated Learning Process

We consider a set N = {1, 2, 3} of three organizations who
aim to collaboratively train a global model without exchanging
raw data. Each organization possesses a private local data set
Dn with size Dn = |Dn|. The organizations can decide whether
to participate in FL training, and we use S ⊆ N to denote
the set of participating organizations. For example, S = {1, 2}
means that organizations 1 and 2 collaborate in FL training,
while organization 3 does not participate in FL and instead
trains a local model itself.

If an organization n does not participate in FL, it trains a
local model using Dn and has a model accuracy denoted as
Al

n ∈ [0, 1]. If organizations in S participate in FL, the FL
process consists of two phases: 1) global training and 2) fine-
tuning, which we discuss as follows.

1) Global Training: Consider a global model parameter-
ized by w. We use fn(w; ζn) to denote the loss of model w over
organization n’s mini-batch instance ζn, which is randomly
sampled from Dn. Let fn(w) � Eζn∼Dn[fn(w; ζn)] denote the
expected loss of model w over organization n’s data set. The
goal of FL is to minimize the expected loss of the model w
over the data sets of all participating clients

min
w

F(w) �
∑

n∈S

anfn(w) (1)

where coefficient an ≥ 0 denotes the weight assigned to
organization n’s data set and

∑
n∈S an = 1. We typically have

an = Dn/(
∑

s∈S Ds).
To derive the optimal weights w∗ � arg minwF(w), FL

proceeds in multiple training rounds. In each round r, the
organizations execute the following steps.

1) Each organization n downloads the global model wr−1

obtained from the last training round.
2) Each organization n trains the model wr−1 multiple

times, and each time it uses a mini-batch instance ζn

randomly sampled from Dn.
3) Each organization n sends the model updates ωr

n to a
(trusted) server for synchronization, who produces an
updated global model wr to be downloaded in the follow-
ing round. One widely used synchronization algorithm
is FedAvg [31], [32], where ωr =∑

n∈S anwr
n.

The above iterative training stops when the global model
converges. We use AS ∈ [0, 1] to denote the global model
accuracy with participating organizations in S .
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TABLE I
COMPARISON WITH RELATED WORK

2) Fine-Tuning: Organization n ∈ S may further fine-tune
the global model post-convergence by retraining some or all
parameters using local data [33]. Fine-tuning can enhance the
global model accuracy, particularly when organizations hold
nonidentically and independently (non-IID) data. The main
reason is that when data across organizations are non-IID, the
global model’s performance can suffer on each organization’s
specific data distribution, and fine-tuning is a promising way
to rectify this and enhance performance. After fine-tuning is
completed, each organization n ∈ S obtains a personalized
local model, and we use AS

n ∈ [0, 1] to indicate the accuracy.
3) Model-Based Service: Organizations use their models

to generate model-based services, such as loan predictions
by banks or disease diagnoses by hospitals [34]. For ease of
presentation, we use An(S) to denote organization n’s final
model accuracy, and

An(S) =
{

Al
n, if n �∈ S

AS
n , if n ∈ S.

(2)

Specifically, if organization n does not participate in FL (i.e.,
n �∈ S), it uses locally trained model Al

n to generate service.
If organization n participates in FL (i.e., n ∈ S), it uses
fine-tuned global model AS

n to generate service. Then, orga-
nizations enter the market competition to sell these services
to prospective customers. We next model the strategies and
objective functions for both customers and organizations.

B. Customer Strategy and Objective

1) Customer Valuation Type: We consider a continuum
population of customers with size normalized to 1. Each indi-
vidual’s valuation of the model-based service is represented
by θ [35], e.g., willingness-to-pay. A larger value of θ means
a greater utility derived from the service. Valuations vary
across the customer population and are modeled as a random
variable θ with a probability density function (PDF) h(θ) and
a cumulative distribution function (CDF) H(θ) on the support
[0, θmax]. While individual valuations are unknown, their
distribution (i.e., h(θ), H(θ), and θmax) is assumed to be known
to the organizations, often through market research [36].

2) Consumer Strategy: Customers face choices among
services of different qualities and prices offered by competing
organizations. For a customer with valuation θ , the decision
to purchase is denoted as dθ = n ∈ {1, 2, 3}, where n corre-
sponds to organization n. Here, we assume organizations offer
substitutable services (e.g., insurance or medical diagnosis),
and a customer will buy from only one organization.

3) Consumer Payoff: The payoff of a customer is defined
as the utility derived from the service minus the unit price

paid. If a customer chooses a service from organization n, the
payoff (i.e., objective) function is

uθ (dθ ;S, p) = θ · An(S)− pn ∀ dθ = n ∈ {1, 2, 3} (3)

where p � {p1, p2, p3}. A higher An(S) is associated with a
better service quality, resulting in a higher utility θ · An(S)

for the customer. Here, we assume that a customer’s utility is
a linear function in An(S) [35]. We will discuss the use of
a more general utility function in Section VIII. Information
about the service quality An(S) from different organizations
can be obtained through feedback systems [37], [38].

C. Organizations’ Decisions and Revenues

1) Organizations FL Coalition and Pricing Strategies: The
organizations first need to decide the FL coalition strategy
represented by S ⊆ N . In addition, each organization n
decides the unit price pn ≥ 0 for providing model-based
service to a customer. A customer needs to pay pn if it
purchases a service from organization n.

2) Organization Revenue: An organization n’s revenue
from an individual customer is the charged price pn. Therefore,
the total revenue Rn(S, p) organization n receives from the
entire customer pool is

Rn(S, p) =
∫ θmax

0
pn · 1dθ=n(S, p) · h(θ)dθ (4)

where 1 is an indicator, i.e., 1dθ=n = 1 if and only if dθ = n.2

Note that while organizations participating in FL incur
communication costs (for model transmission) and compu-
tation costs (for model training), we normalize them to be
zero [2], [39]. This is because organizations usually have
strong computational capabilities, such as high-performance
servers, and dependable communication infrastructure, such
as high-speed wired networks. Nevertheless, one can easily
extend our analysis by subtracting a cost term in (4).

D. Three-Stage Game Formulation

We formulate the interactions between organization and
customers as a three-stage game. In Stage I, organizations
choose the FL coalition strategy S , followed by the unit
prices p in Stage II. Each organization seeks to optimize its
revenue in (4). In Stage III, customers decide their purchasing
strategies to maximize their individual payoffs in (3). The
game is analyzed using backward induction.

2In this work, we normalize the unit service cost when serving each
customer to be zero. Our analysis and conclusions can be easily extended to
where such cost is a nonzero constant.
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Fig. 2. Three-stage Stackelberg game.

Fig. 3. Functional diagram connecting Sections IV–VI.

TABLE II
KEY NOTATIONS

We summarize the key notations in Table II, and further
include a diagram in Fig. 3 showing the connections among
the following sections.

IV. NONCOMPETITIVE CASE

We start with solving the noncompetitive case, which consti-
tutes a crucial component to answer Question 1, i.e., how does
business competition affect organizations’ FL collaboration?
We first discuss the modeling for the noncompetitive case,
and then present the organizations’ optimal prices and FL
coalitions.

A. Model for Noncompetitive Case

In the noncompetitive case, we consider that each orga-
nization n has an exclusive customer pool (i.e., market n)

represented as a continuum of size 1/3 with PDF h(θ) and
CDF H(θ) on support [0, θmax]. A customer within market
n can only purchase service from organization n. We define
dθ,n(S, pn) ∈ {n, 0} as customer θ ’s purchase decision in
market n, where dθ,n(S, pn) = n means purchasing, and
dθ,n(S, pn) = 0 means not purchasing. It is easy to show that

the optimal decision is

d∗θ,n(S, pn) = n · 1θAn(S)−pn≥0. (5)

B. Organizations’ Optimal Pricing and FL Coalition

1) Organization Optimal Pricing: We first analyze the
optimal pricing in Stage II. Based on (5), we can write each
organization n’s revenue RNC

n (S, pn) (in the non-competitive
case) as follows:

RNC
n (S, pn) = pn

3
·
[

1− H

(
pn

An(S)

)]
. (6)

An arbitrary choice of H(·) (or equivalently h(θ)) can render
the optimization of RNC

n (S, pn) over pn intractable. To tackle
this, we make an assumption below.

Assumption 1: The customers’ valuation follows a uniform
distribution, i.e., h(θ) = 1/θmax ∀θ ∈ [0, θmax].
We use a uniform distribution mainly for analytical tractabil-
ity [6], [35], [40]. We will discuss how to relax this
assumption in Section VIII. We will also use other distri-
butions (e.g., truncated normal distribution) in the numerical
experiments in Section VII.

Next, we present the organizations’ optimal price pNC*
n in

the noncompetitive case in Proposition 1.
Proposition 1: Under Assumption 1, the optimal price of

each organization n ∈ {1, 2, 3} in the noncompetitive case is

pNC*
n (S) = θmax

2
An(S). (7)

As a result, organization n’s revenue is

RNC
n (S) = θmax

12
An(S). (8)

Due to space limitation, we defer all the technical proofs to
the Appendix in the supporting document.

Proposition 1 implies that if organization n has a higher
model accuracy, it will set a larger price to optimize the
revenue. Importantly, in the noncompetitive case, each organi-
zation’s optimal price only depends on its own model accuracy
An(S). We will show next that this incentivizes organizations
to form FL coalitions.

2) Organization Optimal FL Coalition: Even if the organi-
zations do not compete in selling model-based services, they
still interact in a game-theoretical fashion in terms of FL
coalition. We model the interactions among organizations as
an FL coalition game below.

Game 1: The FL coalition game among organizations is as
follows.

1) Player: Organization n ∈ {1, 2, 3}.
2) Strategy: Organizations jointly decide a coalition S ⊆

N .
3) Objective: Organization n’s revenue in (8).

Note that the definition in Game 1 differs from prior coalitional
games where the organizations are allowed to share the
benefits (e.g., revenues) associated with each possible coali-
tion [41]. The main reason is that in the context of competitive
FL (to be shown in Section V), revenue sharing may cause a
collusion issue which is prohibited in many countries. Instead,
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we consider where organizations can collaboratively decide FL
coalitions but cannot share revenues obtained from customers.

We apply core stability as the solution concept to Game 1.
Before defining core stability, we differentiate two terms, i.e.,
coalition and coalition structure, as follows.

Definition 1: 1) A coalition S is a subset of N , i.e., S ⊆
N .

2) A coalition structure � is a partition of N , e.g., � can
be {1, 2}, {3} containing two coalitions {1, 2} and {3}.
Moreover, a) the grand coalition �G is the coalition
structure that contains a single coalition N and b) the
separation �R is the coalition structure that contains
three coalitions {1}, {2}, and {3}.

Now we are ready to define core stability.
Definition 2: A coalition structure � is core stable if there

does not exist a coalition S �∈ � so that each organization
in S obtains a larger revenue in S than that obtained in its
current coalition in �.
Note that without any assumptions on An(S), it is difficult
to analyze the core stable coalition structure. To this end, we
make a minor assumption.

Assumption 2: For each n, An(·) is monotonic. That is, for
any S1 ⊆ S2, we have An(S1) ≤ An(S2).
If n �∈ S2 (and hence n �∈ S1), Assumption 2 holds with
equality. If n ∈ S1 (and hence n ∈ S2), Assumption 2 means
that participating organizations achieve a larger accuracy with
more FL collaborators. If n �∈ S1 but n ∈ S2, Assumption 2
means that an organization achieves a larger accuracy from
participating in FL than training a local model. We will show
in Section VII that the numerical results are consistent with
Assumption 2.

Next, we present the core stable coalition structure below.
Theorem 1: Under Assumptions 1 and 2, the grand coali-

tion �G is a core stable coalition structure of Game 1.
Theorem 1 implies that when organizations are not competi-
tors, they have an incentive to form FL coalitions. Forming a
larger FL coalition leads to a better model, and organizations
can set a higher price to maximize their revenues (see
Proposition 1). This demonstrates the benefits of FL. However,
we will show in the next section that even if FL improves all
organizations’ model accuracies, they tend to not collaborate
in the presence of business competition.

V. COMPETITIVE CASE

In this section, we solve the competitive case where orga-
nizations face the same pool of customers.

A. Stage III—Customer Purchasing

Lemma 1 computes the customer’s optimal purchasing
strategies, given the FL coalition S and the prices p.

Lemma 1: Given S and p, a type-θ customer’s optimal
purchasing d∗θ (S, p) is

d∗θ (S, p) = arg maxn(θAn(S)− pn). (9)

Lemma 1 follows directly from (3). It shows that in a
competitive oligopoly market, a type-θ customer will purchase

service from organization n if organization n brings the
customer the largest payoff.

B. Stage II—Organization Pricing

In Stage II, given FL coalition S , each organization chooses
the pricing pn to optimize its own revenue in (4), anticipating
the customers’ optimal purchasing behaviors.

For ease of presentation, we assume without loss of gener-
ality that A1(S) > A2(S) > A3(S). Based on this, we reindex
the organizations in which organization 1 has the best model
and organization 3 has the worse model. Next, we define the
neutral customer type, which will be useful in the Stage II
analysis.

Definition 3: Denote σm,n as the neutral customer type. A
type-σm,n customer obtains the same payoff by purchasing
service from either organization m or organization n, i.e.,
uσm,n(m;S, p) = uσm,n(n;S, p). We can derive σm,n below

σm,n(S, p) = pm − pn

Am(S)− An(S)
. (10)

Based on Definition 3, we can write organizations’ revenues
as a function of p as follows:

⎧
⎨

⎩

R1(S, p) = p1
[
1− H

(
max{σ1,2(S, p), σ1,3(S, p)})]

R2(S, p) = p2H
(
σ1,2(S, p)− σ2,3(S, p)

)

R3(S, p) = p3H(min{σ2,3(S, p), σ1,3(S, p)}.
(11)

We formulate the price competition game in Stage II as
follows.

Game 2: Given S , the three organizations’ pricing compe-
tition in Stage II can be modeled as the following game.

1) Player: Organization n for n ∈ {1, 2, 3}.
2) Strategy: Each organization n decides pn ≥ 0.
3) Objective: Each organization n receives a revenue

in (11).
We aim to solve the Nash equilibrium (NE) of Game 2.

Definition 4: Given S , a profile p∗(S) � {p∗n(S)}n∈N
constitutes an NE of Game 2 if for all n ∈ {1, 2, 3}
Rn

(
p∗n(S), p∗−n(S)

) ≥ Rn
(
p′n(S), p∗−n(S)

) ∀p′n(S) �= p∗n(S)

(12)

where p∗−n(S) = {p∗m(S)}m∈N \{n}.
At an NE, each organization’s price is a best response to the
price set by other organizations, i.e., the equilibrium is the
fixed point of all organizations’ best response prices [8].

Solving the NE of Game 2 can be challenging, as the max
and min functions in (11) make Rn(S, p) nondifferentiable
in pn. To address this issue, we first show that Rn(S, p)

is piece-wise concave. Then, we decompose Rn(S, p) into
several concave segments, compute the optimal solution in
each segment, and compare across multiple segments to obtain
the global optimal solution.

We present the price equilibrium in Proposition 2.
Proposition 2: Under Assumption 1, the NE of Game 2 is

⎧
⎪⎨

⎪⎩

p∗1(S) = (A1(S)−A2(S))(3A1(S)+A2(S)−4A3(S))θmax
6(A1(S)−A3(S))

p∗2(S) = (A1(S)−A2(S))(A2(S)−A3(S))θmax
3(A1(S)−A3(S))

p∗3(S) = (A1(S)−A2(S))(A2(S)−A3(S))θmax
6(A1(S)−A3(S))

.

(13)
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TABLE III
ACCURACY RESULTS

TABLE IV
PRICE RESULTS

We further summarize the price comparison as follows.
Corollary 1: Under Assumption 1, p∗1(S) > p∗2(S) >

p∗3(S).
There are important implications behind Proposition 2 and

Corollary 1. First, as organization 1 has the best model, it
will set the highest price at NE. Second and more importantly,
each organization’s price depends on (and tends to decrease
in) others’ model accuracies. This is different from the
noncompetitive case where an organization’s price only relies
on its own model (see Proposition 1). We will show next that
such interdependency discentivizes organizations to form FL
collaborations.

C. Stage I—Organization FL Coalition

The organizations play an FL coalition game similar to
Game 1, except that the revenues are replaced by Rn(S, p∗)
in (11) with p∗ given in (13). We summarize the stable
coalition structure in Theorem 2.

Theorem 2: Under Assumptions 1 and 2, there exist sce-
narios where the separation �R is the core stable coalition
structure.
Theorems 1 and 2 answer Question 1: When organizations are
not competitors, they have a natural incentive to collaborate
via FL due to improved model accuracy. When organiza-
tions are competitors, however, even if FL enhances model
performance, it also intensifies the price competition. This
decentivizes the organizations to form FL coalitions. Next,
we use a concrete example to illustrate the rationale behind
Theorem 2.

Example 1: Consider three organizations A, B, and C who
have non-IID data. We train models using different FL
coalitions and report the accuracy (acc.) values in Table III.3

We use θmax = 104, calculate the equilibrium price using
Proposition 2 and report the values in Table IV. We further
calculate the revenues using (11) and report them in Table V.

From Table III, we observe that the grand coalition �G

leads to the best models among all possible coalition struc-
tures, which is consistent with Assumption 2. In Tables IV
and V, however, it is the separation �R that achieves the

3Detailed data preparation and hyperparameters are given in Section VII.

TABLE V
REVENUE RESULTS

highest price and revenues. Even if grand coalition obtains
the best model due to learning from all organizations’ data, it
results in very similar accuracy levels among the organizations.
According to Proposition 2, the equilibrium prices are signif-
icantly reduced due to intensified competition. Unfortunately,
the separation (without FL collaboration) ends up being
most beneficial for revenue-maximizing organizations in a
competitive market.

So far we have shown that business competition can be a
barrier that prevents organizations from collaborating via FL
(even if FL incurs zero cost). Next, we present a model dif-
ferentiation mechanism to encourage FL collaboration among
competing organizations.

VI. COMPETITIVE CASE WITH MODEL DIFFERENTIATION

In this section, we present an adaptive model differentiation
mechanism to enhance FL collaboration. In Section VI-A, we
present the mechanism. In Section VI-B, we solve the three-
stage game considering model differentiation.

A. Adaptive Model Differentiation Mechanism

To enhance FL collaboration, we present an adaptive model
differentiation mechanism where organizations can iteratively
adjust their model performance. Our design is inspired by
vertical differentiation in economics [26], [27], [28]. However,
our design is more challenging than prior related literature due
to two reasons. First, prior work focused on the duopoly case
with two organizations whereas our work studies an oligopoly
case with three organizations. Second and more importantly,
the unique characteristic of FL coalition introduces an addi-
tional technical challenge on model differentiation. That is,
prior work typically assumed that organizations can inde-
pendently adjust the qualities/accuracies. In the context of
FL, however, organizations need to jointly consider the FL
coalition behavior which in turn determines the feasible space
of all organizations’ model differentiation.

We present the adaptive model differentiation mechanism
M in Algorithm 1, which has a time complexity of O(N2).
Note that model differentiation occurs after Stage I but before
Stage II, and hence S decided in Stage I can be regarded
as given. The model differentiation mechanism proceeds in
multiple iterations. In each iteration t, each organization
n updates its model accuracy (lines 3-11) in a noncoop-
erative (noncollusive) manner. The mechanism terminates
until the relative difference of organizations’ model accura-
cies between two consecutive iterations is small. Note that
Algorithm 1 requires information exchange of Ãn(t), which is
easy to implement in practice through feedback and reputation
systems.
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Algorithm 1 Adaptive Model Differentiation Mechanism
1: Initialization Let iteration index t = 0. Each organization

n ∈ N starts with Ãn(t = 0) = An(S).
2: repeat
3: for each organization n ∈ N do
4: if Ãn(t) ≥ max{Ãj(t)}j �=n then
5: Ãn(t) = An(S)

6: else if min{Ãj(t)}j �=n < Ãn(t) < max{Ãj(t)}j �=n then

7: Ãn(t) = min{An(S),
min{Ãj(t)}j �=n+max{Ãj(t)}j �=n

2 }
8: else if Ãn(t) ≤ min{Ãj(t)}j �=n then
9: Ãn(t) = max{min{An(S), 2 min{Ãj(t)}j �=n −

max{Ãj(t)}j �=n}, 0}
10: end if
11: end for
12: Update strategy profile: Ã(t + 1)← Ã(t).
13: Update iteration index: t← t + 1.
14: until Ã(t) converges.

An important question of interest is whether the mechanism
converges, which we discuss in Proposition 3.

Proposition 3: Under Assumption 1, the model differentia-
tion mechanism in Algorithm 1 converges in polynomial time.

Having established the convergence, we next solve the three-
stage game incorporating mechanism M, where we use Ãn(S)

to denote the converged model accuracy of organization n.

B. Three-Stage Solution With Model Differentiation

1) Stage III—Customer Purchasing With Model
Differentiation: Note that model differentiation does not affect
the feasible decisions or the payoff functions of customers.
Hence, given S , mechanism M, and pricing p, the customers’
optimal decisions can be characterized similar to Lemma 1,
except that An(S) is replaced by Ãn(S).

2) Stage II—Organization Pricing With Model
Differentiation: Similar to Section V-B, without loss of
generality, we reindex the organizations using Ã1(S) >

Ã2(S) > Ã3(S). In this case, after model differentiation,
organization 1 has the best model and organization 3 has the
worse model. Since model differentiation is completed before
Stage II, one can regard Ãn(S) as given constants. Hence,
we are able to derive the equilibrium price p̃n(S) similar to
Proposition 1, except that An(S) is replaced by Ãn(S).

Before we analyze Stage I, we present another important
property of our proposed model differentiation mechanism.

Proposition 4: Given S , and let Assumption 1 hold. Then,
the model differentiation mechanism in Algorithm 1 leads to
a no smaller revenue for each organization than that where
there is no model differentiation.
Proposition 4 means that the proposed mechanism is incentive
compatible, i.e., each organization has an incentive to execute
the mechanism since it leads to a larger revenue.

3) Stage I—Organization FL Coalition: With model dif-
ferentiation, the organizations decide the FL coalition,
anticipating the equilibrium prices in Stage II and customers’
optimal purchasing in Stage III. For convenience, define:

1) S∗, S̃∗: The FL coalition within the core stable struc-
tures without model differentiation and with model
differentiation, respectively.

2) Amax(S) � max{A1(S), A2(S), A3(S)}: The best model
accuracy among three organizations under coalition S .

3) W(S): Social welfare under coalition S . Social welfare
is defined as the summation of all customers’ payoffs
in (3) and the three organizations’ revenues in (4).

Next, we discuss how model differentiation affects the model
performance and social welfare.

Theorem 3: Under Assumptions 1 and 2, there exist sce-
narios where Amax(S̃∗) > Amax(S∗) and W(S̃∗) > W(S∗).
Theorem 3 together with the model differentiation mechanism
answers Question 2. Model differentiation can mitigate the
impact of price competition, enabling organizations to jointly
improve model performance via FL without compromising
their competitive advantages. Contrary to the intuition that this
might disadvantage customers by lowering competition, our
results show that the mechanism can boost both the model
performance and social welfare. The key reason is that while
differentiation might elevate prices, it promotes collaboration
in FL and thereby enhances the service quality. This increases
the value received by customers [see (3)] and hence can
improve the social welfare.

VII. NUMERICAL RESULTS

We conduct numerical experiments to validate our assump-
tions and analysis. Specifically, in Section VII-A, we
introduce the simulation setup. In Section VII-B, we validate
Assumption 2 and Theorem 3. In Section VII-C, we relax
some technical assumptions (e.g., Assumption 1) and discuss
results that go beyond our theoretical framework.

A. Simulation Setup

We use train FL models on CIFAR-10 [42] using FedAvg.
The CIFAR-10 data set features 10 classes and 60 000 data
points. For non-IID scenarios, we employ the established
Dirichlet distribution with a controlling parameter β > 0 [43].
A smaller β indicates a greater dissimilarity in clients’ label
distributions, which corresponds to a higher degree of non-IID.
In our experiments, we consider two values of β ∈ {0.1, 0.01},
where β = 0.1 corresponds to a mildly non-IID scenario
and β = 0.01 corresponds to an extremely non-IID scenario.
For the results shown in Tables III–V, we use β = 0.1 and
organizations A, B, and, C have 3000, 5000, and 8000 data
points, respectively.

The key hyperparameters are as follows [32]. The model
architecture is based on ResNet-18 [44]. The local epoch
count is set to 5 and the batch size to 64. Local and global
learning rates are 0.1 and 1, respectively. We conduct 50
communication rounds, after which each organization n fine-
tunes the global model using Dn for 5 additional epochs to
obtain their final local models.

B. Validating Assumption 2 and Theorem 3

We first consider β = 0.1 and a uniform distribu-
tion with θmax = 104. Organizations A, B, C have
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TABLE VI
RESULTS WITHOUT MODEL DIFFERENTIATION UNDER β = 0.1

TABLE VII
RESULTS WITH MODEL DIFFERENTIATION UNDER β = 0.1

3000, 3000, and 2500 data points, respectively. We report
the results without model differentiation in Table VI, and
with differentiation in Table VII, where we use bold
texts to highlight the corresponding core stable coalition
structure.

1) Validating Assumption 2: From Table VI, we observe a
weak increase in accuracy for all organizations as the size of
the coalition increases. Specifically, when all three organiza-
tions A, B, and C form a grand coalition, the accuracy levels
are the highest for all clients, e.g., 86.81% for organization A.
Conversely, the accuracy tends to drop when the organizations
form smaller coalitions, suggesting a synergistic effect on
accuracy in larger coalitions. Similar observations can be made
in Table VI, which are consistent with Assumption 2.

However, the price and revenue metrics show a more
complex relationship with coalition structure. For instance,
in Table VI, organization B achieves its highest revenue of
118.27 when in the separation structure, even though its
accuracy is not maximized. This implies that in the presence of
competition, accuracy and revenues are not always positively
correlated, and hence one needs to design a proper mechanism
to encourage FL collaboration. We summarize the above
observations as follows.

Observation 1: 1) Larger coalitions tend to improve model
accuracy for all organizations and 2) an organization’s accu-
racy and revenue are not always positively correlated.

2) Validating Theorem 3: The comparison between
Tables VI and VII indicates a substantial positive impact of
model differentiation. There are three important observations.
First, without model differentiation, the separation structure
is core stable. FL coalition intensifies price competition and
reduces the organization revenue. As a result, organizations
prefer to train local models (see Table VI). With model
differentiation, however, organizations tend to collaborate and
both organizations A and B choose to form FL coalitions (see
Table VII).

Second, we observe that given the same coalition structure
(e.g., {A, B}, {C}), each organization yields a higher revenue
with model differentiation than without it. This implies that
our mechanism is incentive compatible, which also validates
Proposition 4.

Third and most importantly, from Tables VI and VII,
we observe that model differentiation can greatly improve
the model accuracy Amax, the organizations’ total revenues,
and the social welfare. In particular, the improvement is
20.59%, 14.42%, and 10.92%, respectively. These observa-
tions are consistent with Theorem 3. We summarize the above
key observations as follows.

Observation 2: Model differentiation can simultaneously
improve the model accuracy, organizations’ revenues, as well
as the social welfare.

However, we must note that the customer surplus (i.e.,
the summation of all customers’ payoffs) experiences a drop
by 9.8%. This is due to the increased prices from model
differentiation albeit the quality improvement. Nevertheless,
model differentiation improves the social welfare. A more
sophisticated mechanism design to ensure a low or zero drop
of customer surplus is left to future work.

C. Results With Relaxed Assumptions

So far our results are based on the assumptions that 1) the
customers’ valuation θ follows a uniform distribution and
2) each customer’s utility linearly depends on the model
accuracy [see (3)]. Now, we relax these assumptions and study
whether previous results/observations continue to hold. To this
end, we consider β = 0.01, customer’s valuation follows a
truncated normal distribution with mean 5000 and standard
deviation 2000 on support [0, 104]. We further consider a
quadratic utility function i.e., ∀ dθ = n ∈ {1, 2, 3}

uθ (dθ ;S, p) = θ · A2
n(S)− pn. (14)

The quadratic utility can model the scenario where customers
gain marginally increasing benefits as the quality of service
(e.g., in terms of medical diagnosis and financial insurance)
increases. We report the results without model differentiation
in Table VIII, and with differentiation in Table IX, where
we use bold texts to highlight the corresponding core stable
coalition structure.

There are three key observations from Tables VIII and
IX. First, larger coalitions generally improve model accuracy
for all organizations. For instance, in both tables, when the
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TABLE VIII
RESULTS WITHOUT MODEL DIFFERENTIATION UNDER β = 0.01

TABLE IX
RESULTS WITH MODEL DIFFERENTIATION UNDER β = 0.01

coalition includes all three organizations (i.e., {A, B, C}), the
accuracy is the highest for each organization. This again
validates Assumption 2 and is consistent with Observation 1.
Second, given the coalition structure, model differentiation
leads to a no smaller revenue for each organization, which
supports Proposition 4. Third, model differentiation can indeed
yield simultaneous benefits in terms of model accuracy and
social welfare. The improvement is 22.31% and 19.5%,
respectively. This is consistent with Observation 2. We sum-
marize the above key observations as follows.

Observation 3: Observations 1 and 2 continue to hold when
we consider a truncated normal distribution for customers’
valuation and a quadratic customer utility function.

VIII. DISCUSSIONS

In this section, we discuss some possible extensions of our
model and analysis.

A. More General Valuation Distribution

The analysis (e.g., previous propositions and theorems)
relies on the assumption that customers’ valuation follows a
uniform distribution. We note that our analysis can be extended
to a broader class of distributions where h(θ)/[1 − H(θ)]
is nondecreasing in θ . This condition is satisfied by many
commonly used distributions, such as uniform distribution,
normal distribution, and gamma distribution. In this case,
deriving a closed-form solution to Stage II can be challenging,
but the price optimization can be shown to be a piece-wise
concave problem, which can be solved in polynomial time.

B. More General Utility Function

The theoretical results assumed that customers’ utility func-
tion is linear in the model accuracy. We note that our results
can be extended to where the utility function is concave and
strictly increasing in the accuracy. Although a closed-form
solution to Stage II may no longer be available, the price
optimization is still a piece-wise concave problem, and one can
solve it in polynomial time. In addition, in case of nonconcave
and nonlinear utility functions, our experiments in Tables VIII

and IX using a quadratic function show that the key results
(e.g., Theorem 3) continue to hold.

C. More Than Three Organizations

When there are more than three organizations, one can
derive the customers’ optimal purchasing similar to (9). In this
case, assuming that A1 > A2 > · · · > AN , one can write each
organization’s revenue function as follows Rn = pn ·Mn, where

M1 = H(θmax)− H
(
max(σ1,2, σ1,3, . . . , σ1,N−1, σ1,N)

)

MN = H
(
min(σ1,N, σ2,N, . . . , σN−1,Nθmax)

)− H(0) (15)

and for all n = 2, . . . , N − 1

Mn = H
(
σn−1,n −max(σn,n+1, σn,n+2, . . . , σn,N, 0)

)
. (16)

One can use algorithms, such as gradient ascent, to find the
solutions to Stage II.

However, we note that the solutions to Stage I are empir-
ically infeasible under a large N due to there being a total
number of Bell(N) of possible coalition structures. Here,
Bell(·) is the Bell number that increases exponentially in
N [45]. For example, Bell(5) = 52 but Bell(10) = 115975.
One possible remedy to this is to establish a closed-form
correspondence between the coalition and the model accuracy,
which is left to future work.

IX. CONCLUSION

This article studies the under-explored problem of business
competition in FL using an oligopoly framework with three
organizations. We introduce a multistage game to model
these interactions, accounting for both collaboration in FL
training and competition in selling model-based services. Our
findings reveal a paradox: although organizations have an
incentive to collaborate for FL training in a noncompeti-
tive setting, the presence of competition discourages such
collaboration. This is mainly because FL tends to harmo-
nize model performance across organizations, intensify price
competition, and hence reduce revenues. To encourage FL
collaboration, we present an adaptive model differentiation
mechanism in which the organizations iteratively adjust their
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model performance. Perhaps counter-intuitively, both theo-
retical analysis and numerical experiments show that our
mechanism not only enhances model accuracy and orga-
nizations’ revenues, but also improves the overall social
welfare.

For the future work, it is interesting to study the case
where organizations may offer supplementary services and a
customer can buy services from more than one organization.
It is also interesting to study how the asymmetry among the
organizations, in terms of data quantity or quality, affects
the FL coalition and price competition. Considering that
organizations interact repeatedly within a long time window
is another promising research avenue.
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