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Abstract. In competitive distributed learning, organizations face the
challenge of collaboratively training machine learning models without
sharing sensitive raw data, while competing for the same customer base
using model-based services. Federated learning is an extensively stud-
ied distributed learning approach, but it has been shown to discour-
age collaboration in a competitive environment. The reason is that the
shared global model is a public good, which can lead to intense orga-
nization competition and hence small incentives for collaboration. To
address this issue, this paper uses SplitFed learning (SFL) for model
training and proposes an accuracy-shapring mechanism to incentivize
inter-organizational collaboration. SFL divides the global model into two
components: one trained by the organizations and the other by a main
server. After convergence, the mechanism introduces customized noise
into the main server’s model, enabling the provision of differentiated
models to each organization. Both our theoretical analysis and numer-
ical experiments validate the efficacy of SFL and the proposed mech-
anism, showing significant improvements in both model accuracy and
social welfare at equilibrium.

Keywords: distributed machine learning · split federated learning ·
business competition · mechanism design.1

1 Introduction

Distributed learning enables learning clients (e.g., organizations) to collabora-
tively train machine learning models without sharing raw data [23]. While prior
work focused on improving learning performance, the important aspect of busi-
ness competition is yet fully explored and understood. That is, organizations
may use the shared model to offer model-based services to compete for the same
pool of customers [11] (see Fig. 1). For instance, multiple healthcare providers
could train a shared predictive model for patient outcomes without sharing indi-
vidual patient records, yet each could use the model to offer personalized health-
care services. Similarly, financial institutions might jointly develop a credit scor-
ing model without revealing customer financial histories, and then compete by
1 This work was supported through USDA-2020-67021-32855 and NSF OIA-2134901.
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Fig. 1. Business competition in distributed learning.

offering tailored loan services. This dual focus on collaboration without data
sharing and competition through model-based services makes distributed learn-
ing more challenging and intriguing, which is the focus of this paper.

Federated learning (FL) is a recent distributed learning approach, which has
received extensive attention from both academia and industry [15]. Many stud-
ies looked at the client drift problem caused by data heterogeneity in FL and
proposed effective solutions to this end (e.g., [27, 22, 21]). Some other studies
focused on label noise in FL (e.g., [17, 35]) and devised solutions to improve al-
gorithm robustness (e.g., [34, 14]). However, recent research has raised concerns
about the incentive structure within the FL framework. Specifically, the global
model generated through FL is essentially a public good, which is accessible to
all participating organizations [29]. In this case, organizations may be reluc-
tant to contribute to (or even participate in) FL, which could also benefit their
competitors.

To address the aforementioned challenges posed by FL, this paper proposes
to use SplitFed learning (SFL) to incentivize collaborative model training among
competing organizations. SFL operates by partitioning a global model into two
segments, in which organizations are responsible for training one segment, while
the main server performs the training of the remaining one [30]. After multiple
iterations of training, an auxiliary fed server is responsible for aggregating the
models maintained by the organizations.

It is important to note that during the training phase of SFL, organizations
are precluded from accessing the main-server-side model. Consequently, this re-
striction enables the main server to allocate varying model versions to different
organizations. This has a potential to ensure that each organization maintains
competitive uniqueness and hence has incentives to collaborate. For instance,
one organization may specialize in refining demographic analytics, while another
focuses on consumer purchasing patterns. The tailored/differentiated model by
SFL not only preserves the competitive edge of each organization but also fosters
a more collaborative environment, as organizations are incentivized to collabo-
rate without compromising their unique insights. Conversely, the open-access
nature of the global model in FL intensifies competition, as organizations know
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that their competitors have equal access to the global model. This paper aims
to answer the following questions.

Question 1. How to model business competition and what is its impact on
SplitFed learning?

Question 2. How to incentivize collaboration among competing organizations in
SplitFed learning?

To answer these questions, we consider a duopoly scenario involving two
organizations,2 a main server, and a continuum of customers. We formulate a
four-stage game model to characterize their game-theoretical interactions. In
Stage I, the main server designs an accuracy-shaping mechanism that provides
tailored main-server-side model to organizations post convergence to maximize
social welfare. In Stages II and III, each revenue-maximizing organization decides
whether to participate in SFL as well as the unit price for the model-based ser-
vice. In Stage IV, each individual customer makes informed decisions regarding
whether to purchase the service and, if so, from which organization.

To derive insights, we study the equilibrium of the four-stage model via two
metrics: model accuracy and social welfare. Model accuracy serves as an impor-
tant indicator of whether SFL and the proposed mechanism work. Social welfare,
defined as the summation of organization revenue and customer surplus, provides
a lens of the overall societal impact of SFL and the accuracy-shaping mechanism.
We consider two types of benchmarks: FL (e.g., FedAvg [24], FedProx [22], and
MOON [21]) and local learning (LL), where local learning means the organiza-
tions do not collaborate in either SFL or FL, and instead train a local model
using their own data. We will show that under a carefully designed mechanism,
SFL outperforms FL and LL w.r.t. the above two metrics at equilibrium.

Our key contributions are summarized as follows:

– We propose to use SFL to address the business competition issue in dis-
tributed learning. To understand the impact of business competition, we
formulate a four-stage model to characterize the strategic interactions among
the main server, the competing organizations, and the customers.

– We analyze the model’s equilibrium and show that organizations are reluc-
tant to participate in SFL if the main server assigns them the same ver-
sion of main-server-side model. Providing the same models to organizations
intensifies their business competition and resulting in small incentives to
collaborate.

– To incentivize collaboration, we design an accuracy-shaping mechanism where
the main server assigns different versions of main-server-side models to orga-
nizations post convergence. Both theoretical analysis and numerical results
show that SFL outperforms both FL and LL in model accuracy and social
welfare.

2 Duopoly exists in practice, e.g., SwissRe and WeBank collaborate via FL to provide
reinsurance services [1]. The anaysis of more than two organizations is much more
math involved and its discussions are left to the online Appendix 3.1 [2].
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1.1 Related Work

Federated Learning (FL). FL is a popular distributed learning approach that
has received tremendous attention. See [15, 36, 12] for a few excellent surveys. We
only review the most relevant work pertaining to incentives in FL. Sun et al [28]
proposed customized mechanisms catering to clients’ privacy costs. Donahue and
Kleinberg in [3, 4] studied the clients’ optimal collaboration strategy under data
heterogeneity. However, none of these studies looked at business competition.

Until recently, some research attention has been drawn to business compe-
tition in FL [11, 33, 5, 6]. Wu et al [33] proposed a game-theoretical decision
framework for FL competitors to maximize their market share. Gradwohl and
Tennenholtz [6] analyzed clients’ optimal data sharing strategy in the presence
of competition. Huang et al in [11] proposed a revenue-sharing framework to
promote collaborations between competing organizations. Dorner et al in [5] de-
vised mechanisms to incentivize truthful model updates. However, these studies
require monetary rewards/transfers among organizations, which may not be fea-
sible in practice. Our study presents an accuracy-shaping mechanism that does
not require any monetary transfer. One recent work [9] designed a model differ-
entiation mechanism without monetary transfer, but the method was tailored
for FL and cannot be directly used for SFL.

Split Learning (SL) and SplitFed Learning (SFL). SL is another dis-
tributed learning paradigm in which the model is split into two segments, where
clients train one segment in a round-a-robin fashion and the server trains the
other segment [32, 31]. SL reduces the computation overhead of clients but suffers
from a large latency due to sequential client training. To this end, Thapa et al in
[30] proposed SFL that combines FL and SL, enabling parallel training among
clients (like FL) and model splitting (like SL). Recent studies on SFL focused on
convergence analysis (e.g., [8]), reducing the communication overheads (e.g., [25,
26, 7]) and improving privacy/security [18, 20, 19]. Different from prior work, we
study business competition in SFL, and propose game-theoretical mechanisms
to promote inter-organization collaboration.

2 Model

Section 2.1 introduces SFL. Sections 2.2-2.4 model the customers, organizations,
and the main server. Section 2.5 models their game-theoretical interactions.

2.1 SplitFed Learning Process

We consider a group of two organizations, denoted as N = {1, 2}, who seek to
cooperatively develop a machine learning model without exchanging raw data.
Each organization, represented by n, possesses a private dataset Dn of size
Dn = |Dn|. In SFL, organizations execute model training with the help from
two servers: (1) fed-server, responsible for averaging the local models from
the organizations similar to FL; (2) main-server, responsible for conducting a
segment of the model training.
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To be more concrete, consider a global model characterized by x, split into an
organization-side model xc and a main-server-side model xs, with x = {xc,xs}.
Assume that the global model comprises L layers. Here, the organizations train
the organization-side model, i.e., the initial Lc layers, while the main-server
focuses on the main-server-side model, i.e., the residual Ls = L − Lc layers.
The Lc-th layer is referred to as the cut layer. It’s important to note that every
organization sustains its individual organization-side model xc,n, whereas the
main-server maintains a model corresponding to each organization xs,n.3 The
loss function of organization n is represented as fn(x). The goal of SFL is to
minimize the global loss function F (x) below:

min
x

F (x) =

N∑
n=1

anfn(x), (1)

where an = Dn/
∑

n′∈N Dn′ .
A typical SFL process undergoes a total of T rounds to minimize F (x). In

each round t, the organizations first acquire their initialized models from the
fed-server. Each round is bifurcated into two phases:

Phase 1: Training the Model. Organizations, along with the main-server,
engage in training the model through τ iterations. In every iteration i < τ :
1. Organization Forward Propagation: Every organization n selects a mini-batch
of data from Dn, calculates the intermediate representations (e.g., activation
values at the cut layer) over its current model xt,i

c,n, and transmits the interme-
diate representations (together with labels) to the main-server. Note that the
organizations execute forward propagation in parallel.
2. Main-server Training: The main-server computes the loss and the correspond-
ing gradients for organization n, and updates the server-side model xt,i

s,n cor-
responding to organization n. The N main-server-side models are updated in
parallel as well.
3. Organization Backward Propagation: Each organization n calculates the gra-
dient and updates its model accordingly.

Phase 2: Aggregating the Model. Post τ iterations of model training
with the main-server, every organization n forwards its updated organization-
side model (or gradients) to the fed-server. The fed-server aggregates the received
models (possibly through averaging) for organizations to download in the fol-
lowing round. The main server also aggregates all the server-side-models to be
initialized in the next round.

After T rounds, each organization n obtains xT
c,n, and the main server obtains

{xT
s,n,∀n}. The main server assigns a main-server-side model x̃T

s,n (which can
differ from xT

s,n) to each organization n, who obtains a full global model x̃T
n ={

xT
c,n, x̃

T
s,n

}
with accuracy An ∈ [0, 1]. Organizations utilize their local models

to produce services related to the model (e.g., disease diagnoses by hospitals).
3 This is another major version of SFL in which the main server only maintains one

model when interacting with all organizations. We include this version in Sec. 5, and
provide its description in Appendix 3.2 [2].
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Subsequently, organizations enter the market to competitively offer these services
to consumers. Next, we model the decision problems of customers, organizations,
and the main server.

2.2 Customer’s Decision Problem

We consider that the two organizations can reach the same pool of customers,
who are normalized to a population size of one. A customer’s valuation for a
service related to the model is denoted by θ. We model θ as a random variable
with a PDF h(θ) and a CDF H(θ) on support [0, θmax]. Similar to prior studies
[11, 13], we assume that the distribution of valuations is known to the organi-
zations, for example due to market research, while individual valuations remain
unknown.

Two organizations in competition might provide services of varying quality
(as they have different local models) and at different prices. Based on the com-
peting qualities and prices, a customer decides whether to buy a service and,
if so, from which organization. A customer’s decision is denoted as dθ, where
dθ = ∅ means no buying, and dθ = n means buying from organization n. A cus-
tomer’s surplus is the utility derived from the service minus the payment made
to the organization. If no service is purchased, the surplus is zero. If a service is
bought from organization n, the customer enjoys the utility from the service and
pays an amount pn to organization n. Specifically, a customer with valuation θ
has the surplus function as follows:

uθ(dθ;M, q,p) =

{
0, if dθ = ∅,
θ · V (An(M, q))− pn, if dθ = n.

(2)

We assume V (·) to be a strictly increasing function, meaning that the customer
obtains a higher utility θ ·V (An(M, q)) from enjoying a service of higher quality
(which corresponds to a larger An(M, q)). Here, M is the accuracy-shaping
mechanism and q represents the organizations’ participation decision in SFL,
which will be introduced in Sec. 2.3-2.4.

We define a type-θ customer’s decision problem as:

P1 : max
dθ

uθ(dθ;M, q,p). (3)

2.3 Organizations’ Decision Problem

Each organization n has two decisions to make. First, it needs to decide whether
to participate in SFL, and we use qn ∈ {0, 1} to model the participation deci-
sion, where 0 means no participation and 1 means participation. Second, each
organization decides a unit price pn ≥ 0 for its provided model-based service to
each customer. Denote q = (q1, q2) and p = (p1, p2).

The revenue that an organization n earns from an individual customer is the
price pn it sets. Therefore, the total revenue that organization n accumulates
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Stage I: Main server designs accuracy-shaping M

Stage II: Organizations decides participation strategy 𝒒

Stage III: Organizations decides unit pricing 𝒑

Stage IV: Customers decide purchasing strategy 𝑑𝜃

Fig. 2. Four-stage game model.

from the entire customer base is calculated as follows:

Rn(M, q,p) =

∫ θmax

0

pn · 1dθ=n(M, q,p) · h(θ)dθ, (4)

where 1 is an indicator function, meaning 1dθ=n = 1 if and only if dθ = n. Par-
ticipating in SFL also involves computation costs, such as model training, and
communication costs, such as the transmission of organization-side model with
the fed-server and activations/gradients with the main-server. Similar to [10, 11],
we normalize the costs to zero, as the organizations usually have strong com-
putation capabilities and sufficient communication resources. Refer to Appendix
3.3 for a discussion on the computation/communication of SFL.

Each organization’s decision problem is defined as:

P2 : max
qn,pn

Rn(M, q,p). (5)

2.4 Main-Server’s Decision Problem

As discussed, the main server assigns each organization n a main-server-side
model x̃T

s,n which may differ from xT
s,n. To be concrete, we use an accuracy

shaping mechanism M :
{
xT
s,n,∀n

}
→

{
x̃T
s,n,∀n

}
, that maps from the main-

server-side models to the assigned versions to organizations. In practice, the main
server can assign customized models to organization via noise perturbation [16].

The main server aims to maximize the social welfare, i.e., the summation of
organizations’ revenues and customer surplus. The problem is formulated below.

P3 : max
M

∑
n∈N

Rn(M, q,p) +

∫
θ

uθ(dθ;M, q,p)h(θ)dθ. (6)

2.5 Four-Stage Game Formulation

We model the interactions among the main server, organizations, and customers
as a four-stage game (Fig. 2). The main server designs the accuracy-shaping
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mechanism in Stage I to solve P3. The organizations choose participation in
Stage II and pricing in Stage III to solve P2. Each customer decides purchasing
in Stage IV to solve P1. We analyze the game via backward induction.

3 Customers’ and Organizations’ Decisions

3.1 Customers’ Optimal Purchasing in Stage IV

Given M, q, and p, each customer aims to solve P1 by choosing his purchasing
strategy. We summarize the optimal decisions in Lemma 1.

Lemma 1. Let −n ≜ N \ {n}. A type-θ customer’s optimal decision is

d∗θ(M, q,p) =

{
n, if θV (An(M, q))− pn ≥ max{θV (A−n(M, q))− p−n, 0},
∅, else.

(7)

Refer to the Appendix 1 [2] for all technical proofs.
Lemma 1 shows that in a duopoly market, a customer of type-θ will purchase

service from organization n if the payoff from organization n is both non-negative
and greater than that from the other one.

3.2 Organization Optimal Pricing in Stage III

In Stage III, based on the accuracy-shaping mechanism M in Stage I, and the
participation strategy q in Stage II, the two organizations decide their unit
pricing p to optimize their own revenue as defined in (4), while anticipating the
customers’ optimal purchasing in Stage IV.

We assume without loss of generality that in Stage III, organization 1 has a
better model than organization 2, i.e., A1(M, q) > A2(M, q). Based on Lemma
1, we can derive the organizations’ expected revenue functions below:

R1(M, q,p)=p1

[
1−H

(
p1 − p2

V (A1(M, q))− V (A2(M, q))

)]
, (8)

R2(M, q,p) = p2H

(
p1 − p2

V (A1(M, q))− V (A2(M, q))

)
− p2H

(
p2

V (A2(M, q))

)
.

(9)
where H(·) is the CDF of customers’ type distribution.

Based on (8)-(9), we model the pricing competition as a game.

Game 1. (Price Competition in Stage III) The price competition game in Stage
III is defined as a tuple < N ,P =

∏
pn,R =

∏
Rn >, where each organization

n in N decides the unit pricing pn to maximize Rn in (4).

We aim to find Game 1’s Nash equilibrium (NE).
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Definition 1. A strategy profile p∗(M, q) ≜ (p∗n(M, q), p∗j (M, q)) is an NE of
Game 1 if for all n ∈ {1, 2}, p′n(M, q) ̸= p∗n(M, q),

Rn(p
∗
n(M, q), p∗j (M, q)) ≥ Rn(p

′
n(M, q), p∗j (M, q)), (10)

where j ̸= n and j ∈ {1, 2}.

NE is a stable outcome as no organization can be better off via unilaterally
changing its pricing strategy. Note that an arbitrary choice of H(·) can ren-
der the problem analytically intractable. To facilitate analysis, we make minor
assumptions on H(·) (and h(·)).

Assumption 1. On support [0, θmax], (i) h(θ) > 0 and is continuous; (ii)
h(θ)/[1−H(θ)] is increasing in θ.

Assumption 1 holds for commonly adopted distributions, e.g., normal, gamma,
and uniform distributions. We can establish the equilibrium existence below.

Lemma 2. Under Assumption 1, Game 1’s NE exists.

To obtain clean insights, we use a uniform distribution to compute the closed-
form equilibrium:{

p∗1(M, q) = 2[V (A1(M,q))−V (A2(M,q))]V (A1(M,q))θmax

4V (A1(M,q))−V (A2(M,q)) ,

p∗2(M, q) = [V (A1(M,q))−V (A2(M,q))]V (A2(M,q))θmax

4V (A1(M,q))−V (A2(M,q)) .
(11)

Based on (11), we can see that p∗1(M, q) > p∗2(M, q). It implies that organization
1 with a better model will set a larger price to attract customers with larger
valuations. Importantly, the optimal prices of both organizations depend on the
main-server’s mechanism M.

3.3 Organization Optimal Participation in Stage II

In Stage II, given the mechanism M from Stage I, the organizations decide
participation strategy q for SFL, anticipating the responses from Stages III and
IV. We model the two organizations’ interactions as a participation game.

Game 2. (Participation Game in Stage II) The participation game is a tuple
< N ,Q =

∏
qn,R =

∏
Rn >, where each organization n decides qn in SFL to

maximize Rn(M, q,p∗(M, q)), where p∗(M, q) is the NE of Game 1.

We are interested in solving Game 2’s NE defined below.

Definition 2. A profile q∗ ≜ (q∗n, q
∗
j ) is an NE of Game 2 if ∀n, ∀q′n ̸= q∗n,

Rn(M, q∗,p∗(M, q∗))≥Rn(M, (q′n, q
∗
j ),p

∗(M, (q′n, q
∗
j ))), (12)

where j ̸= n and j ∈ {1, 2}.

Next, we characterize the NE in Proposition1.
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Proposition 1. (1, 1) is Game 2’s NE if and only Rn(M, (1, 1),p∗(M, (1, 1))) ≥
Rn(M, (0, 0),p∗(M, (0, 0))),∀n. Otherwise, (0, 0) is the NE.

Proposition 1 means that the two organizations will participate in SFL if and
only if both obtain a higher revenue than not participation. If any one of the
organization does not participate, then the SFL process ceases to exist. Instead,
each organization will use its own data to train a local model. Next, we charac-
terize a somewhat counter-intuitive result on the equilibrium participation.

Theorem 1. Assume that x̃T
s,n = xT

s,n, ∀n, and let Assumption 1 hold. There
exist scenarios where (0, 0) is the NE of Game 2, even if choosing (1, 1) leads to
a higher model accuracy for both organizations.

Theorem 1 implies that if the main server assigns the main-server-side model
to each organization without accuracy shaping, then even if participating in SFL
improves both organizations’ model accuracy, they may choose not to partici-
pate.4 Next, we design an accuracy-shaping mechanism to tackle this issue.

4 Main Server’s Accuracy-Shaping Mechanism in Stage I

4.1 Accuracy-Shaping Mechanism

To maximize social welfare, we propose an accuracy-shaping mechanism where
the main server can allocate different versions of main-server-side model to or-
ganizations. To design an effective mechanism, we need to incorporate the or-
ganization contribution. More specifically, let Cn denote the contribution index
of organization n, and C = (C1, C2). In practice, the main server can use var-
ious metrics (e.g., the number of training data, the label distribution, and the
gradient divergence) of organizations to estimate their contributions to SFL. In-
tuitively, an organization with a larger contribution index should be assigned a
better model. More specifically, we propose the following mechanism.

Mechanism 1. Denote the mapping below as the accuracy-shaping mechanism:

M : {q,C} 7→ {ϵn,∀n}, (13)

where ϵn is the model accuracy degradation of organization n, and it has the
following form:

ϵn(q,C)=

{
0, if q1q2 = 0,

ϵ0

(
1− Cn

max{C1,C2}

)
, if q1q2 = 1,

(14)

where ϵ0 ≥ 0 is a tunable parameter.

4 We provide an example in Appendix 1.4 to illustrate the intuition.
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Mechanism 1 has two intuitions. First, if organizations do not participate in
SFL (i.e., q1q2 = 0), then trivially the accuracy-shaping mechanism will not be
implemented. Second, the organization with a larger contribution index Cn will
receive noise-free model from the main server. The other organization with a
smaller contribution index will receive a degenerated model. As will be shown,
compared to the case where organizations always receive the same noise-free
main-server-side model, accuracy shaping can better incentivize training partic-
ipation and induce higher social welfare at equilibrium.

4.2 Mechanism Properties

Mechanism 1 satisfies a few properties. We start with the definition.

Definition 3. A mechanism is (i) feasible if ϵn ≥ 0,∀n; (ii) individually ratio-
nal if Rn(M, q∗,p∗) ≥ 0,∀n; (iii) incentive compatible if each organization n
achieves a no smaller revenue from participating in SFL than without participa-
tion (i.e., local learning).

Feasibility means that the main server can only degrade the model perfor-
mance by adding noise to the converged (server-side) model. It cannot improve
the model performance due to lack of raw data. Individual rationality means that
at equilibrium, each organization can achieve a non-negative payoff. Incentive
compatibility means that each organization achieves a no-smaller payoff than
when training a local model without SFL.

It is straightforward to show that Mechanism 1 is feasible and individual
rational. We are interested in understanding the incentive compatibility property,
which is summarized in Theorem 2.

Theorem 2. Assume that 1) participating in SFL leads to a higher accuracy
than local learning for both organizations, and 2) customers’ type θ follows a
uniform distribution. Then, there exists a positive ϵ0 such that Mechanism 1 is
incentive compatible, and it achieves a higher social welfare than local training.

Note that even if the analysis of incentive compatibility depends on the sec-
ond assumption of uniform distribution, our numerical results using other dis-
tributions (e.g., normal distribution) are consistent with Theorem 2.

5 Numerical Results

5.1 Simulation Setup

We train ResNet-18 on the CIFAR-10. We consider that the two organizations A
and B have 5k and 8k data, which are sampled using the Dirichlet distribution
with a controlling parameter β ∈ {0.1, 0.5, 1,∞}. We consider two versions of
SFL, i.e., SFL-V1 and SFL-V2 [30], and split the model after the fourth residual
block. For the benchmarks, we use vanilla FL (FedAvg), FedProx, MOON, and
local learning (LL) where each organization trains a local model using its own
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data without FL or SFL. We use 50 communication rounds for SFL and FL.
Each experiment is repeated by 3 runs. More details of hyper-parameters and
compute resources are in Appendix 2.1.

5.2 Training Results

Table 1 reports the training results including the values of mean and standard
deviation. From this table, we make a few observations below. First, all of FL
and SFL algorithms consistently outperform local training across all β values.
This indicates the effectiveness of collaborative training in leveraging data from
multiple sources, compared to training on a single local dataset. Second, as β
decreases, there is a general trend of decreasing performance for all algorithms.
This is a commonly observed phenomenon in distributed learning. Importantly,
SFL consistently outperforms FL and LL. We will show in the following that
SFL also incentivizes learning collaboration and achieves a higher social welfare
than FL algorithms.

5.3 Equilibrium Results

Now, we use Table 1 (the mean values) to calculate the equilibrium of the four-
stage game. We consider that the customers have a linear valuation function, i.e.,
V (A) = A, and their type θ is uniformly distributed on [0, 104]. For the accuracy-
shaping mechanism, we use the number of data samples as the contribution
index, i.e., C1 = 5k and C2 = 8k. Note that the mechanism only applies to
SFL-V1 and SFL-V2 in which the main server holds the main-server-side model
that is not accessible to the organizations during training. The accuracy-shaping
mechanism does not work for FL, because organizations have full access to the
entire global model during training. The mechanism does not apply to LL, either.

More specifically, we consider four types of accuracy-shaping mechanisms
for SFL-V1 and SFL-V2 using ϵ0 ∈ {0, 0.2, 0.3, 0.4}, where ϵ0 = 0 means no
accuracy-shaping (similar as in FL). The equilibriums in Stages IV and III can be
calculated by Lemma 1 and Eq. (11), respectively. We calculate the equilibrium
participation using Proposition 1. We report the equilibrium participation and
the social welfare defined in (6) in Table 2. We make a few observations.

1. Non-participation and low NE outcomes of FL. From Table 2, we see that
FL (e.g., FedAvg and FedProx) leads to non-participation and low social welfare.
This observation can be attributed to the intense price competition induced
by the shared global model. Despite potential gains in accuracy, the shared
model intensifies competition and crucially reduces organization revenues. Hence,
organizations prefer local learning over participation in FL. Similar observation
has also been made in prior literature [11].

2. Accuracy-shaping of SFL encourages participation and improves social wel-
fare. Where there is no accuracy-shaping, SFL faces similar issue to FL, i.e.,
the increased competition leads to non-participation and hence low social wel-
fare. When there is accuracy-shaping, i.e., ϵ0 ∈ {0.2, 0.3, 0.4}, SFL significantly
boosts participation and social welfare. This is because the tailored accuracy
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Table 1. Training results (in %) under different β. For SFL and FL, we report the
global model accuracy. For LL, we report the accuracy for both organizations A and
B. Given β, we highlight the best score in bold and the second best underlined.

Algorithm β = ∞ (IID) β = 1 β = 0.5 β = 0.1

SFL-V1 86.57 ± 0.26 82.69 ± 2.44 81.25 ± 0.80 75.06 ± 1.18
SFL-V2 86.72 ± 0.42 85.36 ± 0.56 83.01 ± 1.70 75.69 ± 2.84
FedAvg 85.91 ± 0.22 83.92 ± 0.66 81.68 ± 1.63 75.61 ± 2.76
FedProx 84.27 ± 0.19 81.65 ± 0.63 79.97 ± 1.78 72.84 ± 2.83
MOON 83.34 ± 0.47 80.10 ± 1.09 77.40 ± 2.22 69.85 ± 3.23
LL (A) 58.43 ± 4.04 49.24 ± 3.92 43.06 ± 5.42 34.66 ± 5.06
LL (B) 70.08 ± 2.25 50.94 ± 8.67 46.61 ± 13.65 42.94 ± 5.17

Table 2. Equilibrium results based on Table 1. Each cell contains two values: opti-
mal participation (left) and social welfare (right). Here, ✓ indicates participation, ×
indicates no participation, and − means not applicable. Given β, we highlight the best
score in bold and the second best underlined.

Algorithm β = ∞ (IID) β = 1 β = 0.5 β = 0.1

SFL-V1 (ϵ0 = 0.0) × | 3416.91 × | 2536.84 × | 2307.46 × | 2082.90
SFL-V1 (ϵ0 = 0.2) × | 3416.91 ✓ | 4083.08 ✓ | 4010.93 × | 2082.90
SFL-V1 (ϵ0 = 0.3) ✓ | 4246.24 ✓ | 4051.47 ✓ | 3979.16 ✓ | 3668.24
SFL-V1 (ϵ0 = 0.4) ✓ | 4211.70 ✓ | 4016.42 ✓ | 3943.92 ✓ | 3632.06
SFL-V2 (ϵ0 = 0.0) × | 3416.91 × | 2536.84 × | 2307.46 × | 2082.90
SFL-V2 (ϵ0 = 0.2) × | 3416.91 ✓ | 4216.83 ✓ | 4099.11 × | 2082.90
SFL-V2 (ϵ0 = 0.3) ✓ | 4253.78 ✓ | 4185.50 ✓ | 4067.53 ✓ | 3699.90
SFL-V2 (ϵ0 = 0.4) ✓ | 4219.26 ✓ | 4150.80 ✓ | 4032.53 ✓ | 3663.82

FedAvg × | 3416.91 × | 2536.84 × | 2307.46 × | 2082.90
FedProx × | 3416.91 × | 2536.84 × | 2307.46 × | 2082.90
MOON × | 3416.91 × | 2536.84 × | 2307.46 × | 2082.90

LL − | 3416.91 − | 2536.84 − | 2307.46 − | 2082.90

reduces competition, increases organizational revenues, and makes participation
economically appealing. This also contributes to a higher social welfare, as the
customers are receiving model-based services with higher qualities (compared
to local learning). The social welfare improvement can be up to 66.38%, e.g.,
SFL-V2 with ϵ0 = 0.2 at β = 1.

5.4 More experiments and discussions

We have included more experiments on 1) two different datasets CIFAR-100
and HAM10000, and 2) a different customer scenario with quadratic valuation
function and Guassian distributed types. The results are reported in Appendices
2.2-2.3 and consistent with our observations.

So far our results are based on the canonical duopoly competition model.
When there are more than two organizations, we can similarly analyze the equi-
librium in Stages IV and III. However, the optimal participation in Stage II can
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be challenging, and one may apply the coalitional game theory (e.g., as in [3])
to this end. We provide a more detailed discussion in Appendix 3.1.

6 Conclusion

This work studied the complex dynamics of competitive distributed learning,
where organizations aim to collaboratively develop ML models while competing
for the same base of customers. We showed that sharing the global model can
be inefficient in competitive scenarios, as it inadvertently increases competition
rather than collaboration. To address this issue, we used SFL and proposed a
tailored accuracy-sharing mechanism. Upon convergence, the mechanism induces
tailored noise into the main server’s model, which facilitates the differentiation of
models for each organization. Both theoretical and numerical results show that
our proposed mechanism incentivizes collaboration and significantly improves
the social welfare, compared to existing FL benchmarks.

For future work, it is interesting to develop more robust SFL algorithms
under data heterogeneity. It is also interesting to incorporate privacy enhanc-
ing techniques (e.g., differential privacy) into the accuracy-shaping mechanism
design.
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